
CS103 Handout 43

Fall 2018 November 30, 2018

Practice Final Exam I

We strongly recommend that you work through this exam under realistic conditions rather than
just flipping through the problems and seeing what they look like. Setting aside three hours in a
quiet space with your notes and making a good honest effort to solve all the problems is one of
the single best things you can do to prepare for this exam. It will give you practice working un-
der time pressure and give you an honest sense of where you stand and what you need to get
some more practice with.
This practice final exam is a (slightly modified) version of the final exam we gave out in Spring
2017. The exam policies are the same for the midterms – closed-book, closed-computer, limited
note (one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 55 total points.

Question Points Graders

(1) Binary Relations and Functions / 10

(2) Graphs and the Pigeonhole Principle / 10

(3) Induction and Set Theory / 11

(4) Regular and Context-Free Languages / 11

(5) R and RE Languages / 10

(6) P and NP Languages / 3

/ 55

2 / 14

Problem One: Binary Relations and Functions (10 Points)
(We recommend spending about 40 minutes on this problem.)
Over the course of the quarter, you’ve gotten a lot of practice working with different classes of bi-
nary relations and their properties. This problem explores two subtypes of strict orders and how
they relate to one another.

Let’s begin with a new definition. A binary relation R over a set A is called trichotomous if for
any x, y ∈ A, exactly one of the following statements is true:

xRy x=y yRx
A binary relation R is called a strict total order if R is a strict order and R is trichotomous.

As a refresher from Problem Set Three, if R be a strict order over some set A, then the incompa-
rability relation of R, denoted ~R, is a binary relation over A defined as follows:

x ~R y if xR̸y ∧ yR̸x
(As a reminder, the “if” in the above context means “is defined to mean.” Also, note that those R’s
on the right-hand side of the definition have slashes through them.)

A binary relation R over a set A is called a strict weak order if R is a strict order and R’s incompa-
rability relation ~R is transitive.

Let A and B be arbitrary sets. Let f : A → B be an arbitrary function from A to B and let R be an
arbitrary strict total order over B. Consider the relation S over the set A defined below:

xSy if f(x) R f(y)

Prove that S is a strict weak order over A.

3 / 14

(Extra space for your answer to Problem One, if you need it)

4 / 14

Problem Two: Graphs and the Pigeonhole Principle (10 Points)
(We recommend spending about 40 minutes on this problem.)
On Problem Set Four, you explored bipartite graphs. As a refresher, a graph G = (V, E) is called
bipartite if its nodes can be partitioned into two sets V₁ and V₂ where every edge e ∈ E has one
endpoint in V₁ and the other in V₂. This question explores some additional properties of bipartite
graphs.

Let’s begin with a new definition. If G = (V, E) is an undirected graph, the complement of G, de-
noted Gc, is a graph related to the original graph G. Intuitively, Gc has the same nodes as G, and its
edges consist of all the edges missing from graph G. Formally speaking, Gc is the graph with the
same nodes as G and with edges determined as follows: the edge {u, v} is present in Gc if and only
if u ≠ v and the edge {u, v} is not present in G. As an example, here's a sample graph and its com-
plement:

a b

c d e

a b

c d e

Prove that if G is a graph with at least five nodes, then at least one of G and Gc is not bipartite.

5 / 14

(Extra space for your answer to Problem Two, if you need it.)

6 / 14

Problem Three: Induction and Set Theory (11 Points)
(We recommend spending about 40 minutes on this problem.)
When you were first learning algebra, you probably learned a family of techniques to solve equa-
tions in which a variable x was on both sides of an equals sign. For example, you probably learned
how to look at a formula like

x2 = ax + b
and to use the quadratic formula to solve for x.
It's also possible to set up equations involving some unknown that appears on both sides of an
equals sign, but where the quantities involved are languages rather than numbers. For example, if
A and B are languages, you may want to determine what languages X satisfy the equality

X = AX ∪ B.
Just as the quadratic formula is a useful tool for solving for x given a quadratic equation, in for-
mal language theory there's a result called Arden's lemma that's useful for solving for X in an
equation of the above form. Specifically, Arden's lemma says that, given the equality X = AX ∪ B,
you are guaranteed that

A*B ⊆ X.
In this problem, we're going to ask you to prove Arden's lemma.
Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L₁ and L₂
are languages over an alphabet Σ, then the concatenation of L₁ and L₂, denoted L₁L₂, is the lan-
guage

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }.
From concatenation, we can define language exponentiation of a language L inductively as fol-
lows:

L0 = {ε} } Ln+1 = LLn

You may find these formal terms helpful in the course of solving this problem.
i. (8 Points) Let A and B be arbitrary languages over some alphabet Σ. Prove, by induction,

that if X = AX ∪ B, then AnB ⊆ X for every n ∈ ℕ. Please use the formal definitions of
concatenation, language exponentiation, union, and subset in the course of writing up your
answer.

7 / 14

(Extra space for your answer to Problem Three, Part (i), if you need it.)

8 / 14

If you'll recall, we formally defined the Kleene closure of a language L over Σ to be the language
L* = { w ∈ Σ* | there is some n ∈ ℕ such that w ∈ Ln }.

ii. (3 Points) Let A and B be arbitrary languages over some alphabet Σ. Using your result
from part (i) of this problem and the formal definition of L*, prove that if X = AX ∪ B,
then A*B ⊆ X.

9 / 14

Problem Four: Regular and Context-Free Languages (11 Points)
(We recommend spending about 35 minutes on this problem.)

Let Σ = {a, b} and let L₁ be the language over Σ given by the regular expression (ab ba)*∪ ba)* .

i. (3 Points) Design a DFA for L₁.

10 / 14

Let Σ = {a, b, :} and consider the following language L₂:

L₂ = {w:x | w, x ∈ {a, b}* and w is a substring of x }

Here are some strings in L₂. For convenience, we’ve underlined where the substring appears:

• aabb:aaaabbbb

• bbb:aabbbaa

• abab:aaabbbabab

• aaa:aaaaa

• aaa:aaa

• abb:abb

• :abab

• :

Here are some sample strings not in L₂:

• aaa:ababa

• aaa:bbb

• bbb:bb

• aabb:abab

• ab:

• a:aa:aaa:aaaa:aaaaa

• ::

• ε}

This language is not regular, and in this problem we’d like you to convince us why this is.

ii. (4 Points) To save you time, rather than having you write out a full proof that L₂ is not
regular, we’d instead like you to answer the following questions:

1. The Myhill-Nerode theorem requires you to choose an infinite set S of strings that are
pairwise distinguishable relative to L₂. In the space below, write such a set S.

2. Suppose you choose two arbitrary, distinct strings x and y from the set S. What string
w will you append to x and y to show that they are distinguishable relative to L₂?

3. Briefly explain why the choice of w you found above shows that x and y are distin-
guishable relative to L₂.

11 / 14

Let Σ = {1, +, =} and consider the language L₃ defined as follows:

L₃ = {1m+1n=1m+n | m, n ∈ ℕ and m + n is even }

Here are some sample strings in L₃:

• 1+1=11

• +11=11

• +=

• 111+11111=11111111

• 1111+11=111111

• 11111+11111=1111111111

Here are some sample strings not in L₃:

• 1+1=111

• 11+1=111

• 1111+1=11111

• 111+1111=1111111

• 111+111+11=11111111

• 11+11=111+1

• 1111=11+11

• 111++1==1++111

The language L₃ happens to be context-free.

iii. (4 Points) Write a context-free grammar for L₃.

12 / 14

Problem Five: R and RE Languages (10 Points)
(We recommend spending about 20 minutes on this problem.)
A buffer overflow is an error where a program accidentally tries to write data to an index in an ar-
ray that’s beyond the end of that array. For example, writing to array index 10 in an array of size 5
would be a buffer overflow, as would writing to the 137th index of an array of size 137 (assuming
the array is zero-indexed). This sort of error is an extremely common source of bugs and security
vulnerabilities. For example, the recent WannaCry worm, which infected over 200,000 machines
in a single day, used a buffer overflow to spread.

You might be wondering why, if there’s a specific program behavior that we know leads to secu-
rity vulnerabilities (writing to an array index past the end of the array), we can’t just write a
method

boolean hasBufferOverflowOnInput(string program, string input);

that takes as input the source code of a program and the input to that program, then returns
whether, when that program is run on that input, that program executes a line of code that writes
beyond the end of an array. Unfortunately, there’s no way to implement the above method.

i. (4 Points) In the interests of time, we don't want you to write out a full formal proof of
this result. Instead, do the following:

1. In the space below, write code for a self-referential program P that uses the has-
BufferOverflowOnInput method such that running P on some input w causes a buf-
fer overflow if and only if running P on w does not cause a buffer overflow. You can
assume you have access to a method mySource() that returns the source code of your
program, and you can assume that the hasBufferOverflowOnInput method itself
doesn’t trigger a buffer overflow.

2. Briefly explain why running your program P on some input w triggers a buffer over-
flow if and only if running P on w does not trigger a buffer overflow.

13 / 14

ii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { ⟨M, w⟩ | M is a TM, w is a string, and M accepts wn for every natural number n }

4. { ⟨M, w⟩ | M is a TM, w is a string, and M accepts wn for at least one natural number n }

5. { w ∈ {a, b}* | w contains the same number of copies of the substrings aabb and bbaa }

6. { w ∈ {a, b}* | w contains the same number of copies of the substrings ab and ba }

7. { ⟨M, w⟩ | M is a TM, w is a string, M loops on w, and |⟨M, w⟩| ≤ 10137 }

8. { ⟨M⟩ | M is a TM and M loops on ⟨M⟩ }

14 / 14

Problem Seven: P and NP Languages (3 Points)
(We recommend spending about 5 minutes on this problem.)
Here's a quick series of true/false questions about the P and NP languages. Each correct answer is
worth one point, and there is no penalty for an incorrect guess. You do not need to justify your
answers.

i. If a language is in P, then there is no polynomial-time verifier for it.

☐ True ☐ False

ii. There is a language L where L is in P if and only if P = NP.

☐ True ☐ False

iii. All NP-complete problems are polynomial-time reducible to one another.

☐ True ☐ False

We have one final question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question – we're honestly curious to hear your opinion!

☐ I think P = NP ☐ I think P ≠ NP

